µSDR-C™ Software Defined Radio

µSDR-C Dimensions: 10 cm x 10 cm x 8 cm

KEY FEATURES

- Small Form Factor Software Defined Radio
- Radiation Hardened
- Suitable for LEO, GEO
- FPGA Reconfigurable Resources, Transceiver Chip
- Base µSDR-C using 2 Board Set (DPS + RF Transceiver) provides 150 MHz to 6 GHz operation
- Optional Up/Down Converter Board with Low Noise Amplifier (LNA), Power Amplifier (PA) available
- Interfaced with KG-250 NSA Type 1 Cryptographic Unit (Option)

BLOCK DIAGRAM

- **µSDR-C**
 - 512MB DDR3L
 - OSC 33.33 MHz
 - PROCESSING SYSTEM: Dual core ARM Cortex-A9
 - 3 FLASH Chips Gigabyte
 - WATCHDOG, FLASH CTRL, 10 MHz PLL
 - BACKPLANE CONNECTOR 300 Pin Searay
 - 1GB DDR3L PL
 - PROGRAMMABLE LOGIC 125k CELLS, 9.5 Mb RAM, 593GMACs
 - RF TRANSCEIVER
 - OSC 40 MHz VCXO

- **CSP Processor** (Digital Software Defined Radio)
 - PROCESSING SYSTEM: Dual core ARM Cortex-A9
 - 3 FLASH Chips Gigabyte
 - WATCHDOG, FLASH CTRL, 10 MHz PLL
 - BACKPLANE CONNECTOR 300 Pin Searay
 - 1GB DDR3L PL
 - PROGRAMMABLE LOGIC 125k CELLS, 9.5 Mb RAM, 593GMACs
 - RF TRANSCEIVER
 - OSC 40 MHz VCXO

- **Personality Card**
 - RF DAC
 - CAN
 - Ext Clk
 - 10MHz Ref
 - SGMII
 - Boot Cfg
 - JTAG

- **Digital Signal Processor Board**

- **RF Transceiver Board**

- **Up/Down Converter Board (Optional)**

µSDR-C Specifications

- **Dimensions:** 10 cm x 10 cm x 8 cm
- **Operational Bandwidth:** 150 MHz to 6 GHz
- **Input Band:** 2025-2120 MHz
- **Output Band:** 8.0-8.4 GHz
- **Output Power:** +33dBm
- **Power Amplifier:** 1W-10W SSPA

µSDR-C Features

- Small Form Factor
- Radiation Hardened
- Suitable for LEO, GEO
- FPGA Reconfigurable Resources
- Interfaced with KG-250 NSA Type 1 Cryptographic Unit

Contact Information

15378 Avenue of Science, Suite 200, San Diego, CA 92128
858.332.0700 | sales@spacemicro.com | www.spacemicro.com
µSDR-C™ Software Defined Radio

Transceiver Features

Carrier Frequency
150 MHz — 6 GHz

Tunable Channel Bandwidth
<200kHz to 56 MHz

Data rate
1 kbps to 42 Mbps using Higher Modulation Codes

RF Output Power
User configurable: 6.5 dBm to 8 dBm from RF Transceiver
Optional Power Amplifier: 1 to 10 Watts RF Power

LO step size
< 2.4 Hz

Encoding
CCSDS ReedSolomon(255,223), Interleave=5, CONVO (7,1/2), LDPC and User Provided Options Available

Modulation
BPSK, OQPSK, 8PSK, 16APSK, FSK

ADC/DAC
12-bits, Optimized Sample Rate of 30.72 Msps
Optional Sample Rate up to 61.44 Msps

Receiver Section

Noise Figure
UHF: < 2.5 dB
S-band: 3 dB
C-band: 3.8 dB

Dynamic Range
Threshold (Minimum) -21 dBm (Maximum)

Sensitivity
-109 dBm (Maximum)

100 kbps, 16-ary FSK, 1E-6 BER Range
Dependent on RF Power Output and Antenna Selection

Power—Receiver Only
4 W (Typical)
5 W (Maximum)
Transmitter Power Determined by Required Output Power Needed

General Specifications

- Size: 10 x 10 x 5 cm (2 Board Base Model); 10 x 10 x 8 cm (3 Board Model)
- Weight: <0.6 kg (2 Board Model); < 0.75 kg (3 Board Model)
- Operating Temperature: -30° C to +60° C (contact factory for other temperature ranges)
- Storage Temperature: 50°C to + 85°C
- Vacuum Environment: 10E-5 Torr
- Power consumption: 8 Watt
- Radiation
 - 30, 50 and 100 krad models available
 - No SEL <70 MeV/mg/cm²
 - No unrecoverable SEFI
µSDR-C™ Software Defined Radio

I/O AND INTERFACES

Telemetry Outputs
- Received Signal Strength Indicator (RSSI)
- Automatic Gain Control (AGC)
- Carrier and Demod Lock
- Frequency and Time Offset
- Critical Voltages
- Critical Temperatures

Programmable I/O
- 14 User Programmable I/O Pins on µD 15-pin Header
- Differential Routed Pairs on 2.5 V Bank
- LVDS25 or LVCMOS25 Standards
- Bus Routed

Standards Available on µD 15-pin connector
- Standards available in Zynq EMIO
- SPI
- UART
- I2C
- CAN (Phy not on backplane)
- No Ethernet
- SpaceWire (tested to 100 Mbps) Core Provided
- EtherWire

Telemetry Interface
User Defined

INPUT VOLTAGE

Maximum Input Power
2.5 dBm to the Transceiver
Slice Available for Signal Conditioning of Power Prior to Entering the Transceiver Chip

POWER CONSUMPTION

<table>
<thead>
<tr>
<th>Element</th>
<th>Tx & Rx Power</th>
<th>Tx Power</th>
<th>Rx Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digital Processing</td>
<td>1.8</td>
<td>1.3</td>
<td>1.3</td>
</tr>
<tr>
<td>Agile Converter</td>
<td>2.1</td>
<td>1.3</td>
<td>1.3</td>
</tr>
<tr>
<td>Up convert</td>
<td>1.6</td>
<td>1.6</td>
<td>0</td>
</tr>
<tr>
<td>Down convert</td>
<td>1.6</td>
<td>0</td>
<td>1.6</td>
</tr>
<tr>
<td>Freq Synthesis</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Power Amp (2W)</td>
<td>6.6</td>
<td>6.6</td>
<td>0</td>
</tr>
<tr>
<td>LNA</td>
<td>0.3</td>
<td>0</td>
<td>0.3</td>
</tr>
<tr>
<td>Misc</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>TOTAL</td>
<td>15.5</td>
<td>12.3</td>
<td>6</td>
</tr>
<tr>
<td>Option: +28V DC-DC Conversion</td>
<td>25%</td>
<td>25%</td>
<td>25%</td>
</tr>
</tbody>
</table>